, Ltd., Baoding City, China). A high-voltage supplier (supplied by high-voltage direct-current power supply, BGG6-358, BMEI Co., Ltd., Beijing, China) was connected to the click here syringe needle. In order to obtain grooved nanofibers and investigate the formation mechanism of grooved texture, 20% (w/v) PS solutions with different THF/DMF volume ratios (6:0, 5:1, 4:1, 3:1, 2:1, 1:1, 1:2, 1:3, 1:4, 1:5, and 0:6); PS solutions at concentrations of 10%, 15%, Integrin inhibitor 25%, and 30% (w/v) (THF/DMF ratio, 1:1 v/v); and 10% (w/v) PS solutions with different THF/DMF volume ratios (6:0, 5:1, 4:1, 3:1, 2:1, 1:2, 1:3, 1:4, 1:5, and 0:6) were electrospun, while
relative humidity (RH), collecting distance, feeding rate, and applied voltage were kept at 60%, 15 cm, 1.5 ml/h, and 12 kV, respectively. To fully investigate the
formation mechanism of grooved texture, 20% (w/v) PS solutions with different THF/DMF volume ratios (6:0, 5:1, 4:1, 3:1, 2:1, 1:1, 1:2, 1:3, 1:4, 1:5, and 0:6) and 10% (w/v) PS solutions (THF/DMF ratio, 1:1 v/v) were electrospun under the lowest applied voltage (5 kV). Apart from that, 10% (w/v) PS solution (THF/DMF ratio, 1:1 v/v) CH5424802 purchase was used as a model to check the effect of other parameters (e.g., relative humidity, applied voltage, collecting distance, feeding rate). Characterization The surface morphology and cross section of the as-spun PS nanofibers were observed under field emission scanning electron microscopy (FE-SEM) (S-4800, Hitachi Ltd., Tokyo, Japan), and then the SEM images were analyzed using image analysis software
(Adobe Acrobat X Pro 10.1.2.45). Results and discussion Preparation of grooved PS fibers To explore the effect of solvent system on the secondary morphology of electrospun fibers, 20% (w/v) PS solutions Etomidate with various THF/DMF ratios were electrospun (Figures 1 and 2C). Here, it should be noted that PS fibers could be fabricated in a highly stable manner from all PS solutions, except that electrospinning process of 20% (w/v) PS solution using pure THF as solvent was unstable and often interrupted by the problem of needle clogging. As shown in Figure 1A,B, the resultant beaded fibers from 20% (w/v) PS/THF solution exhibited a ribbon-like shape which should be attributed to a rapid drying followed by collapse of the liquid jet [21]. In addition, there were numerous big and small pores with irregular shapes on both the surface of beads and fibers. Thermally induced phase separation (TIPS) should be responsible for the porous surface. The evaporation of volatile THF (vapor pressure, 0.36 kPa) absorbed a great amount of heat and cooled the nearby environment; as a result, water vapor began to condense in the vicinity of the jet-air interface.