Nanoscale Res Lett 2014, 9:330 10 1186/

Nanoscale Res Lett 2014, 9:330. 10.1186/1556-276X-9-330CrossRef RSL3 purchase 18. Sun Y, Mayers B, Herricks T, Xia Y: Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence. Nano Lett 2003, 3:955–960. 10.1021/nl034312mCrossRef 19. Rathmell AR, Bergin SM, Hua Y-L, Li Z-Y, Wiley BJ: The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films. Adv Mater 2010, 22:3558–3563. 10.1002/adma.201000775CrossRef 20. Rathmell AR, Wiley BJ: The synthesis and coating of long, thin copper nanowires to make flexible, transparent conducting films on plastic substrates. Adv Mater 2011, 23:4798–4803. 10.1002/adma.201102284CrossRef 21. Lyons PE,

De S, Elias J, Schamel M, Philippe L, Bellew AT, Barasertib datasheet Boland J, Coleman JN: High-performance transparent conductors from networks of gold nanowires. J Phys Chem Lett 2011, 2:3058–3062. 22. S’anchez-Iglesias A, Rivas-Murias

B, Grzelczak M, P’erez-Juste J, Liz-Marz’an LM, Rivadulla F, Correa-Duarte MA: Highly transparent and conductive films of densely aligned ultrathin Au nanowire monolayers. Nano Lett 2012, 12:6066–6070. 10.1021/nl3021522CrossRef 23. Rathmell AR, Nguyen M, Chi M, Wiley BJ: Synthesis of oxidation-resistant cupronickel nanowires for transparent conducting nanowire networks. Nano Lett 2012, 12:3193–3199. 10.1021/nl301168rCrossRef 24. da Silva AB, Arjmand M, Sundararaj U, Bretas RES: Novel composites ITF2357 clinical trial of copper nanowire/PVDF with superior dielectric properties. Polymer 2014, 55:226–234.CrossRef 25. Bao SP, Liang GD, Tjong SC: Positive temperature coefficient effect of polypropylene/carbon nanotube/montmorillonite

hybrid nanocomposites. IEEE Trans Nanotechnol 2008, 8:729–736.CrossRef 26. Tang H, Liu ZY, Piao JH, Chen XF, Lou YX, Li SH: Electrical behavior of carbon black-filled polymer composites—effect of interaction between filler and matrix. J Appl Polym Sci 1994, 51:1159–1164. 10.1002/app.1994.070510701CrossRef 27. Luo YL, Wang GC, Zhang BY, Zhang ZP: The influence of crystalline and aggregate structure on PTC characteristic of conductive polyethylene/carbon black composite. Eur Polym J 1998, 34:1221–1227. PIK3C2G 10.1016/S0014-3057(98)00099-8CrossRef 28. Park SJ, Kim HC, Kim HY: Role of work of adhesion between carbon blacks and thermoplastic polymers on electrical properties of composites. J Colloid Interface Sci 2002, 205:145–149.CrossRef 29. Kim JI, Kang PH, Nho YC: Positive temperature coefficient behavior of polymer composites having a high temperature. J Appl Polym Sci 2004, 92:394–401. 10.1002/app.20064CrossRef 30. Horibe H, Kamimura T, Yoshida K: Electrical conductivity of polymer composites filled with carbon black. Jpn J Appl Phys 2005, 44:2025–2029. 10.1143/JJAP.44.2025CrossRef 31. Lee JH, Kim SK, Kim NH: Effects of the addition of multi-walled carbon nanotubes on the positive temperature coefficient characteristics of carbon-black-filled high-density polyethylene nanocomposites.

Comments are closed.