PCR products

were electrophoretically resolved on ethidiu

PCR products

were electrophoretically resolved on ethidium bromide (0.5 μg mL-1)-containing agarose gels (1.5%, w/v). M1: λ DNA digested with PstI, M2: λ DNA digested with EcoRI-HindIII. Even though the total mRNA templates were equal for all PCR samples, the signals in hrp induction medium are very weak, so they have been highlighted by an arrow. The split secretin gene A distinguishing feature of gene organization in Rhc T3SS clusters is a split gene coding for the outer membrane secretin protein SctC, i.e. a HrcC/YscC homologue [28]. This is also true for the subgroup II Rhc T3SS gene clusters. In the T3SS-2 clusters of the three P. syringae pathovars the secretin gene is split in two ORFs (Figure selleck chemicals llc 4, Additional file 4: Table S1). In P. syringae pv phaseolicola 1448a, loci PSPPH_2524 (hrc II C1) and PSPPH_2521 (hrc II C2) code for the N-terminal and the C-terminal part of secretin, respectively, of a HrcC/YscC homolog. Comparisons

of Hrc II C1 and Hrc II C2 with the RhcC1 and Rhc2 proteins of Rhizobium sp. NGR234 are given in Additional file 5: Figure S4, respectively. A similar situation occurs in P. syringae pv oryzae str. 1_6 while in P. syringae pv tabaci Pitavastatin molecular weight ATCC11528 hrc II C2 gene is further split into two parts. However in P. syringae pv phaseolicola 1448a and P. syringae pv tabaci ATCC11528 the two hrc II C1, hrc II C2 genes are only separated by an opposite facing ORF coding for a TPR-protein, while in the subgroup I Rhc T3SS these two genes are separated even further (Figure 4). Although the functional significance of the split secretin gene is not known, there are reports Interleukin-2 receptor of constitutive expression of the rhcC1 gene in contrast to the rest of the T3SS operons in rhizobia [29, 30]. In subgroup III only the rhcC1 could be identified (RHECIAT_PB0000097 in the R. etli CIAT 652 and RHE_PD00065 in R. etli CNF 42) in Psi-BLAST searches using the Hrc ΙΙ C1 protein sequence as query (25% identity to RhcC1 of Rhizobium sp. NGR234) (Figure 4). Figure 4 Genetic organization of the Rhc T3SS gene clusters, indicating the diversification of three main subgroups. ORFs are represented by arrows. White

arrows indicate either low sequence similarities between syntenic ORFs like the PSPPH_2532: hrpO II case or ORFs not directly related to the T3SS gene clusters that were excluded from the study. Homologous ORFs are indicated by similar coloring or shading pattern. Only a few loci numbers are marked for reference. Gene symbols (N, E, J etc.) for the T3SS-2 genes are following the Hrc1 nomenclature. 1) Subgroup I cluster (Rhc-I), is represented by Bradyrizhobium japonicum USDA110 and JNK-IN-8 includes also the T3SS present on the pNGR234a plasmid of strain NGR234 (not shown); 2) Subgroup II (Hrc II /Rhc II ), represented by the T3SS-II gene clusters of Rhizobium sp. NGR234 pNGR234b plasmid [38] , P. syringae pv phaseolicola 1448A[44], P. syringae pv tabaci ATCC 11528 and P. syringae pv oryzae str.

Comments are closed.