S. chartarum is usually referred to as “toxic mold”; toxicity has been associated with exposure to spores and production of mycotoxins [3–5]. CA-4948 datasheet In addition, S. chartarum and other indoor molds have been linked to damp building-related illnesses (DBRI) such as allergic reactions of the upper respiratory system (e.g. irritated eyes, nose and throat) [6]. Likewise, cases of idiopathic pulmonary hemosiderosis
have been associated with S. chartarum indoor exposures [7, 8]. Also, S. chartarum may trigger immunologic, neurologic, and oncogenic disorders [5, 7, 9]. https://www.selleckchem.com/products/i-bet-762.html proper risk management decisions are necessary whenever S. chartarum is identified in mold-infested environments for the proper remediation of this mold and minimal exposure of occupational workers to its toxic effects [10, 11]. At present, there are no standardized protocols to identify the need for mold-remediation for indoor built environments. Most of the published mold-remediation guidelines recommend visual inspection for fungal growth as part of the assessment for mold-remediation at damp or water-damaged settings. Usually by the time visible mold growth is observed, it implies that inaccessible areas within the building construction are already mold-contaminated [11, 12]. The implementation of new technologies for close monitoring OSI-027 chemical structure of secluded, damp spaces is necessary for the early detection of mold growth. Several studies suggested
the use of microbial volatile organic compound (MVOC) profiles as a diagnostic tool to determine mold-related problems in homes and buildings [13–15]. MVOCs are volatile organic chemical emissions associated with mold metabolism and may be linked to some of the adverse respiratory conditions generated by S. chartarum[16–19]. Combinations of MVOC emissions generate characteristic odors; these are detected prior to visual mold growth in buildings where occupants complaint of poor indoor air quality [20, 21]. MVOCs are suitable markers because they easily diffuse through weak barriers
like wallpaper and small crevices [12, 15, 20]. Likewise, they could be used for early detection of mold growth in hidden cavities (i.e. air ducts) and infrequently-visited places such as attics, crawl spaces and basements [12, 22]. Several studies suggest that MVOC emission patterns could be used for the identification and Wilson disease protein classification of closely related microorganisms [23, 24]. Larsen and Frisvad [25] analyzed the MVOCs emissions pattern of 47 Penicillium taxa and showed and the MVOCs emission profiles were unique enough to classify Penicillium to the species level. In a previous study, our laboratory characterized MVOCs emitted by three toxigenic strains of S. chartarum when grown on Sabouraud Dextrose Agar (SDA) and gypsum wallboard [26]. In the present study, we included seven toxigenic strains of S. chartarum to identify unique MVOCs for this mold to help in the construction of a robust MVOC library.