The potential difference between the reference electrode and the

The potential difference between the reference electrode and the indicator electrode is measured at zero current flow. The ideally nonpolarizable reference electrode provides a constant potential, while the indicator electrode shows an erratic potential depending on the concentration of the analytes. The zero current potentials applied between those two electrodes are recorded as a function of the concentrations of target analytes in a logarithmic manner [48]. The potential difference at the electrode-electrolyte interface arising from unbalanced activities of species i in the electrolyte phase (s) and in the electrode phase (��) is related by the following Nernst equation:E=Eo+RTZiF ln aisai��(2)where E0 is the standard electrode potential, R the gas constant, T the absolute temperature, F the faraday constant, ai the activity of species i, and Zi the number of moles of electron involved.

Potentiometric sensors are divided into the metal-oxide sensitive field effect transistor (MOSFET), the light-addressable potentiometric sensor (LAPS), the ion-sensitive field effect transistors (ISFET) and the ion-selective electrodes (ISE). Ali et al. developed a commercial MOSFET using a GOx modified ZnO nanowire. GOx-functionalized ZnO nanowires were grown on the Ag wire and then directly connected to the MOSFET gate (Figure 1) [54]. They tested the response time and the stability of the MOSFET sensor by using three different GOx/ZnO modified Ag electrodes, i.e.

, vertically aligned, uniform nonaligned, and nonuniform nonaligned ZnO nanowires.

The results showed that well aligned ZnO-modified electrode displayed a good stability, short response time (<100 ms), and improved detection limit. They also further demonstrated that the GOx/ZnO modified MOSFET is able to be used for the immobilization of other biomolecules to make versatile electrodes for biosensing.Figure 1.Schematic GSK-3 illustration of the configuration of the MOSFET-based potentiometric glucose detection using an extended-gate functionalized-ZnO nanowire as a working electrode and the Ag/AgCl reference electrode (reproduced with permission from [54]. Copyright …

ISFETs and LAPS Anacetrapib have attracted much attention for biosensing application being especially convenient for construction. The principles of LAPS are based on the activation of semiconductor by a light emitting diode [55]. Seki et al. developed a LAPS based on SiO2/Al2O3 film grown on an n-type Si substrate. The GOx was immobilized on the film at various pH in the range of 3 to 11. Upon exposure to the light emitting diode, the equilibrium potential of the GOx-modified SiO2/Al2O3 film was increased linearly with the increase of glucose concentration up to 4 mM.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>