The warm-up procedures (dry and in-water) consisted of their typical figure 1 warm-up frequently performed before a competitive swimming event (total volume: 1000 m). After 10 min rest, the tethered swimming protocol was implemented. One day after, the same protocol was repeated, but without warming up. The swimmers were wearing a belt attached to a steel cable (negligible elasticity). As the force vector in the tethered system presented a small angle to the horizontal, computing the horizontal component of force, data was corrected. A load-cell system connected to the cable was used as a measuring device, recording at 100 Hz with a measure capacity of 5000 N. The data obtained was transferred by a Globus Ergometer data acquisition system (Globus, Italy) that exported the data in ASCII format to a computer.
Individual force to time F (t) curves were assessed and registered to obtain maximum force (Fmax, the highest value of force produced in first 10 s) absolute and relative values and; mean force (Fmean �C average force values during the 30s test) absolute and relative values. The test started after an acoustic signal, with the swimmers in a horizontal position, with the cable fully extended. The data collection started after the first stroke cycle to avoid the inertial effect of the cable extension after the first propulsion. The swimmers swam as natural as possible during 30 s, at maximum intensity. Additionally, capillary blood samples were collected from the fingertip before and after each tethered swimming (at the 1st and 3rd min of recovery) to access the higher values of blood lactate concentration ([La-]) (Accutrend Lactate?Roche, Germany).
The values of [La-]net were determined by the difference between [La-] after the test and the resting values. The Borg (1998) ratings of perceived exertion (RPE) scale was used to quantify exercise level of exertion after each test. Statistics Standard statistical methods were used for calculation of means and standard deviations. Normality was determined by Shapiro-Wilk test. Since, the very low value of the N (i.e., N < 30) and the rejection of the null hypothesis (H0) in the normality assessment, non-parametric procedures were adopted. In order to compare the data obtained with and without warm-up, non-parametric Wilcoxon signed rank test was used. Differences were considered significant for p �� 0.05.
Results Table 1 presents the mean �� SD values for the tethered absolute variables, namely the maximum force and mean force. Significant differences were evident for the data obtained on tethered front crawl swimming test after warm-up and without warm-up. The warm-up condition presented higher values. Cilengitide Table 1 Mean �� SD values of maximum (Fmax) and mean forces (Fmean) exerted during the tethered swimming test. P-values are presented Figure 1 presents relative values of the maximum and mean forces in both conditions.