Heterologous competitive

binding assays using anticancer

Heterologous competitive

binding assays using anticancer drugs showed that there was a decrease in the percentage of bound biotinylated purified Bt 18 toxin in cell population treated with the anticancer drugs at 59.26 nM (32.76%, 9.82%, 44.67%, 40.27%, 20.40% for cisplatin, doxorubicin, etoposide, navelbine and methotrexate respectively). The selected anticancer drugs in this study bind to and enter cancer cells via see more various mechanisms and target various sites in these cells. For instance, methotrexate is an antimetabolite and a potent inhibitor of the enzyme dihydrofolate reductase (DHFR) which blocks DNA synthesis and stops cell replication [20]. Navelbine is a vinca alkaloid which binds to tubulin and causes inhibition of the assembly of the mitotic

spindles, arresting cells in metaphase and induces apoptosis [21]. Both doxorubicin and etoposide exert their cytotoxic effect by forming AZD5582 manufacturer a complex with DNA and topoisomerase II, Nutlin-3a clinical trial leading to breaks in double-stranded DNA [20, 22]. On the other hand, cisplatin works by binding to DNA via intrastrand and interstrand crosslinks. This leads to inhibition of DNA replication and transcription, resulting in breaks and miscoding and eventually apoptosis [20]. By competing purified Bt 18 toxin with each anticancer drug separately, it allows one to study the mechanism of action of purified Bt 18 toxin by comparing with that of the anticancer drug. If the drugs and the toxin showed competition then there is a possibility of these drugs either interfering with toxin binding to CEM-SS cells or the toxin and the drugs sharing a common binding site Thiamet G on the cell membrane which initiates a sequence of events leading to cell death. All results for the competitive binding were statistically significant (p < 0.05) except for navelbine (p > 0.05). However, two confounding factors need to be taken into consideration. Firstly, these findings were confounded by a significantly high percentage of cell death at such high drug concentration (59.26

nM) (21.98%, 11.72%, 22.95%, 22.10%, and 10.92% for cisplatin, doxorubicin, etoposide, navelbine and methotrexate respectively, p < 0.001). Next, there was a possibility of competition for non-specific binding sites on CEM-SS cells. Due to these confounding factors, it was difficult to infer from the results obtained whether the decrease in the percentage of bound biotinylated purified Bt 18 toxin was due to true competition or confounders. However, what could be deduced from the results was that at lower drug concentrations, there was little competition occurring between the toxin and all 5 drugs tested as the percentage of displacement of the biotinylated toxin was small (< 30%), which suggested that the binding sites (hence mechanism of action) might differ for purified Bt 18 toxin and the commercially available anticancer drugs chosen in this study.

Comments are closed.