Immunoreactivity for the angiotensin II type 2 receptor (AT(2)R) was observed on conventional and displaced GABAergic amacrine cells. Co-localization studies showed that AT(2)R-expressing amacrine cells constituted at least two separate sub-populations. Cell counts revealed that all wide-field amacrine RAD001 cells expressing protein kinase C-alpha were also AT(2)R-positive; a further subset of amacrine cells expressing AT(2)Rs and stratifying in sublamina
“”b”" of the inner plexiform layer (IPL) was identified. Developmental expression of AT(1)Rs was dynamic, involving multiple inner neuronal classes. At postnatal day 8 (P8), AT(1)R immunoreactivity was observed on putative ganglion cells. The characteristic bipolar cell labeling observed in adults was not evident until P13. In contrast, AT2Rs were detected as early as P2 and localized specifically to amacrine cells from this age onward. These data provide further evidence for the potential role of angiotensin II in the modulation of retinal neurons and glia. The differential pattern of expression of these receptors across these cell types is similar to that observed in the brain and suggests that a similar functional role for Ang II may also exist within the retina. (C) 2009 IBRO. Published by Elsevier Ltd. All rights reserved.”
“Reactive oxygen species
(ROS) Selleckchem Napabucasin have been suggested to play a major role in aminoglycoside-induced hair cell (HC) loss, but are difficult to detect. Moreover, ROS can occur normally in cells where they have AZD3965 mouse roles in metabolism, cell signaling and other processes. Two new probes, aminophenyl fluorescein (APF) and hydroxyphenyl fluorescein (HPF) are dyes which selectively detect highly-reactive oxygen species (hROS), those most associated with cellular damage. We assessed the presence of hROS in the neonatal rat organ of Corti during chronic exposure to 50 mu M gentamicin in vitro, to examine the relationship between cell damage and hROS across HC type and across the three cochlear turns. hROS were initially detected
at 48 hours (h), with an increase at 72 h and persistence until at least 96 h. At 48 h, hROS were restricted to outer HCs and occurred prior to loss of stereocilia. At 72 h, outer HCs showed both hROS and stereocilia loss, and hROS were noted in a few inner HCs. Basal turn HCs showed more hROS than middle turn HCs. Very little hROS accumulation or stereocilia loss was observed in the apical turn, even at 72 h. First row outer HCs were most vulnerable to gentamicin-induced hROS, followed by second and then third row outer HCs. Inner HCs behaved similarly to third row outer HCs. By 96 h stereocilia damage was extensive, but surviving HCs showed persisting fluorescence. APF consistently showed more fluorescence than HPF.